Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: enhanced production of pyruvate.

نویسندگان

  • Adam Bignucolo
  • Varun P Appanna
  • Sean C Thomas
  • Christopher Auger
  • Sungwon Han
  • Abdelwahab Omri
  • Vasu D Appanna
چکیده

Pseudomonas fluorescens invoked a metabolic reconfiguration that resulted in enhanced production of pyruvate under the challenge of hydrogen peroxide (H₂O₂). Although this stress led to a sharp reduction in the activities of numerous tricarboxylic acid (TCA) cycle enzymes, there was a marked increase in the activities of catalase and various NADPH-generating enzymes to counter the oxidative burden. The upregulation of phosphoenolpyruvate synthase (PEPS) and pyruvate kinase (PK) coupled with the reduction of pyruvate dehydrogenase (PDH) in the H₂O₂-challenged cells appear to be important contributors to the elevated levels of pyruvate found in these bacteria. Increased pyruvate synthesis was evident in the presence of a variety of carbon sources including d-glucose. Intact cells rapidly consumed d-glucose with the concomitant formation of this monocarboxylic acid. At least a 12-fold increase in pyruvate production within 1h was observed in the stressed cells. These findings may be exploited in the development of technologies aimed at the conversion of carbohydrates into pyruvate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens.

The role of metabolism in anti-oxidative defence is only now beginning to emerge. Here, we show that the nutritionally-versatile microbe, Pseudomonas fluorescens, reconfigures its metabolism in an effort to generate NADPH, ATP and glyoxylate in order to fend off oxidative stress. Glyoxylate was produced predominantly via the enhanced activities of glycine dehydrogenase-NADP(+) (GDH), glycine tr...

متن کامل

Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress.

The role of alpha-ketoglutarate (KG) in the detoxification of reactive oxygen species (ROS) has only recently begun to be appreciated. This ketoacid neutralizes ROS in an NADPH-independent manner with the concomitant formation of succinate and CO(2). To further probe this intriguing attribute of KG in living systems, we have evaluated the significance of histidine metabolism in the model organi...

متن کامل

The Metabolic Reprogramming Evoked by Nitrosative Stress Triggers the Anaerobic Utilization of Citrate in Pseudomonas fluorescens

Nitrosative stress is an ongoing challenge that most organisms have to contend with. When nitric oxide (NO) that may be generated either exogenously or endogenously encounters reactive oxygen species (ROS), it produces a set of toxic moieties referred to as reactive nitrogen species (RNS). As these RNS can severely damage essential biomolecules, numerous organisms have evolved elaborate detoxif...

متن کامل

Effects of cysteine on growth, protease production, and catalase activity of Pseudomonas fluorescens.

Cysteine inhibits growth of and protease production by Pseudomonas fluorescens NC3. Catalase activity in P. fluorescens NC3 was increased by cysteine. The addition of exogenous hydrogen peroxide did not increase catalase activity, thus suggesting a role for the endogenous generation of hydrogen peroxide via the autoxidation of cysteine.

متن کامل

Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0.

In Pseudomonas fluorescens biocontrol strain CHA0, the two-component system GacS/GacA positively controls the synthesis of extracellular products such as hydrogen cyanide, protease, and 2,4-diacetylphloroglucinol, by upregulating the transcription of small regulatory RNAs which relieve RsmA-mediated translational repression of target genes. The expression of the stress sigma factor sigmaS (RpoS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biotechnology

دوره 167 3  شماره 

صفحات  -

تاریخ انتشار 2013